Perfect Square Trinomials

UNIT 7A: QUADRATIC EQUATIONS | PROBLEM SET 7A 02

The left-hand side of the standard form of a quadratic equation, $a x^{2}+b x+c$, is called a trinomial. Trinomials that can be factored into two identical factors are called perfect square trinomials. One example of a perfect square trinomial is $x^{2}+18 x+81$ which can be factored into $(x+9)(x+9)$ or $(x+9)^{2}$. The picture below helps us understand why this trinomial is called a "perfect square."

Several other examples of perfect square trinomials are shown below:

$$
\begin{aligned}
& x^{2}-10 x+25=(x-5)(x-5)=(x-5)^{2} \\
& x^{2}+18 x+81=(x+9)(x+9)=(x+9)^{2} \\
& 9 x^{2}+24 x+16=(3 x+4)(3 x+4)=(3 x+4)^{2} \\
& x^{2}-5 x+\frac{25}{4}=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)=\left(x-\frac{5}{2}\right)^{2} \\
& 4 x^{2}-6 x+\frac{9}{4}=\left(2 x-\frac{3}{2}\right)\left(2 x-\frac{3}{2}\right)=\left(2 x-\frac{3}{2}\right)^{2}
\end{aligned}
$$

Expand each product into a perfect square trinomial.
[ex] $\quad(2 x+7)(2 x+7)=4 x^{2}+28 x+49$
[01] $(x-5)(x-5)=$
[02] $(x+8)^{2}=$
[03] $(4 x-3)^{2}=$
[04] $(x-1)(x-1)=$

Factor each perfect square trinomial into a product of two identical factors to show that the trinomial is equal to a single factor squared. BEWARE, one of the trinomials in this set is NOT a perfect square trinomial. If you find it, don't try to factor it, just write "not a perfect square."
[ex] $x^{2}+12 x+36=(x+6)(x+6)=(x+6)^{2}$
[05] $x^{2}+16 x+64=$
[06] $4 x^{2}+12 x+9=$
[07] $x^{2}-24 x+121=$
[08] $9 x^{2}-6 x+1=$
[09] $x^{2}+20 x+100=$
[10] $16 x^{2}+40 x+25=$

Let's give some special attention to those perfect square trinomials that begin with x^{2}, that is trinomials of the kind $a x^{2}+b x+c$ where $a=1$. Factor each of the following perfect square trinomials.
[11] $x^{2}-22 x+121=$
[12] $x^{2}+14 x+49=$
[13] $x^{2}-30 x+225=$
[14] $x^{2}+4 x+4=$
[15] $x^{2}+32 x+256=$
[16] What do you notice about the constant in red (the value of c) and the coefficient of x in blue (the value of b)? Is there any way to use the value of one to find the value of the other? Can you use a picture of some kind to justify any of your observations or claims?

Solve these quadratic equations. Let your first move be a factoring of the perfect square trinomial on the left side of the equation.
[ex] $4 x^{2}-24 x+9=18$
[ex] $x^{2}+18 x+81=0$
$(x+9)(x+9)=0$
$(x+9)^{2}=0$
$2 x+3= \pm \sqrt{18}$
$x+9=0$
$2 x=-3 \pm 3 \sqrt{2}$
$x=-9$
$x=\frac{-3 \pm 3 \sqrt{2}}{2}$
[17] $x^{2}+16 x+64=12$
[18] $4 x^{2}+12 x+9=25$
[19] $x^{2}-24 x+121=27$
[20] $9 x^{2}-6 x+1=3$
[21] $x^{2}+20 x+100=18$
[22] $16 x^{2}+40 x+25=34$
[23] $x^{2}-22 x+121=75$
[24] $x^{2}+14 x+49=60$

